
© 2003, 2004 Enterprise Distributed Technologies Ltd

Table of Contents
1 Introduction.. 3
2 FTP Protocol Overview.. 4

2.1 Introduction...4
2.2 Active and passive modes...4

2.2.1 Passive mode...4
2.2.2 Active mode.. 4

2.3 FTP Commands.. 4
2.4 Sample scenarios ..5

2.4.1 Example 1... 5
2.4.2 Example 2... 5

2.5 Data types..6
2.6 Session commands..6
2.7 File commands..6
2.8 Directory commands...7

3 edtFTPnet API.. 8
3.1 Constructors.. 8
3.2 Login... 8
3.3 Directory navigation and control ... 8
3.4 Files and file transfers...8
3.5 Directory listings...9
3.6 Miscellaneous commands... 9
3.7 Message Logging.. 10
3.8 Transfer Events... 10
3.9 Firewalls..11

4 Logging API... 12
4.1 Overview...12
4.2 Logging Levels... 12
4.3 Configuration.. 12
4.4 Examples...13

5 Glossary.. 14
6 References.. 15

1 Introduction
The design philosophy behind the edtFTPnet API is to closely mirror the standard FTP commands
as defined by RFC959. The advantage of this approach is that most .NET developers already know
how to use FTP and therefore, by implication, already know the edtFTPnet interface.

The purpose of this guide is to describe the usage of the edtFTPnet API in embedding FTP
functionality in .NET applications.

Note that a version of edtFTPnet supporting SOCKS proxies and secure transfers over SSL, called
edtFTPnet/Pro, is available. This implements the edtFTPnet API over a protocol known as FTPS (as
well as supporting standard FTP). If you require secure FTP or SOCKS support, please consider
using edtFTPnet/Pro. Note that edtFTPnet/Pro is a commercial product, with source code optionally
available.

2 FTP Protocol Overview

2.1 Introduction
FTP (File Transfer Protocol) is a well established Internet protocol designed to transfer files (and
information about files) across networks using TCP (Transmission Control Protocol).

FTP is defined in the Request For Comments 959 document (RFC 959), which can be obtained
from the Internet Engineering Task Force.

FTP requires a client program (FTP client) and a server program (FTP server). The client can fetch
files and file details from the server, and also upload files to the server. The server is generally
password protected.

FTP commands are initiated by the client, which opens a TCP connection called the control
connection to the server. This control connection is used for the entire duration of a session between
the client and server. A session typically begins when the client logs in, and ends when the quit
command is sent to the server. The control connection is used exclusively for sending FTP
commands and reading server replies - it is never used to transfer files.

Transient TCP connections called data connections are set up whenever data (normally a file's
contents) is to be transferred. For example, the client issues a command to retrieve a file from the
server via the control channel. A data connection is then established, and the file's contents
transferred to the client across it. Once the transfer is complete, the data connection is closed.
Meanwhile, the control connection is maintained.

2.2 Active and passive modes
Data connections may be set up in two different ways, active and passive. Note that active and
passive refer to the operation of the FTP server, not the client.

2.2.1 Passive mode
In passive mode, the client sends a PASV command to the server. This tells the server to listen for a
connection attempt from the client, hence the server is passively waiting. The server replies to
PASV with the host and port address that the server is listening on. The client deciphers this reply
and when a data connection is required, attempts to initiate the connection to the server at this
address.

2.2.2 Active mode
In active mode, the server actively connects to the client. To set up active mode, the client sends a
PORT command to the server, specify the address and port number the client is listening on. When
a data connection is required, the server initiates a connection to the client at this address.

Generally the server is responsible for closing data connections.

2.3 FTP Commands
FTP commands sent across the control connection consist of simple text strings (and follow the
Telnet protocol - see RFC 854). For example, to retrieve a file, the client sends "RETR filename" on
the control connection to the FTP server. To transfer a file, the client sends "STOR filename".

The FTP server acknowledges each command with an FTP reply, which consists of a three digit
number followed by human-readable text. The first digit indicates if the response is good, bad, or
incomplete. If an error occurred, the second digit may be used to indicate what type of error
occurred. Similarly, the third digit can indicate more details of the error.

The first digit is the most important, and the five possible values are described below:

Reply Description
1yz Positive Preliminary reply. The request action has been initiated, but another reply is to be

expected before the client issues another command.
2yz Positive Completion reply. The requested action has successfully completed, and the client

may issue another command.
3yz Positive Intermediate reply. The command has been accepted, but more information is

required. The client should send another command in reply.
4yz Transient Negative reply. The command failed, but it can be retried
5yz Permanent Negative Completion reply. The command failed, and should not be repeated.

2.4 Sample scenarios

2.4.1 Example 1
For example, to change directory the client sends:

> CWD dirname
The server responds with:

250 CWD command successful
As the reply begins with a ‘2’, we know the command sequence is completed.

However if we attempt to change directory to one that does not exist:
> CWD nonexistentdir

The server responds with:
550 nonexistentdir: The system cannot find the file specified.

As the reply begins with a ‘5’ we know that the command failed, and that it will fail again if
repeated (unless the missing directory is created on the server).

2.4.2 Example 2
To transfer a text file, we issue a ‘RETR’ command to the server. However to transfer the file we
require a data connection to be set up. This can be done using active or passive mode.

As discussed previously, in active mode, the client sends a ‘PORT’ command, indicating what
address and port number the server should connect to:

> PORT 192,168,10,1,4,93
The first four digits are the IP address, and the last two encode the port number (in two 8-bit fields,
the first being the high order bits of the 16-bit port number).

The server responds with:
200 PORT command successful.

This indicates that the data connection has been established.

Next, the ‘RETR’ command is issued:
> RETR abc.txt

The server responds with:

150 Opening ASCII mode data connection for abc.txt(70776 bytes).
The reply begins with a ‘1’, so we know that the command was successful, but the server will be
sending another reply – the client cannot issue another command until this is received.

Eventually, the server sends:
226 Transfer complete.

The command sequence is complete, the file has been transferred, and the client can issue another
command.

See RFC 959 for details about the second digit, and more extensive examples.

Note that most standard command-line FTP clients support debug mode, which displays the FTP
commands that are being sent to the server, and the reply strings that are received back. Typing
“debug” at the prompt will usually put the client into debug mode.

2.5 Data types
The two most common data types in usage are ASCII and binary.

ASCII is the default data type, and is intended for the transfer of text files. A line of text is followed
by <CRLF>. Note that different operating systems use different end of line terminators.

Binary type (known as IMAGE in FTP) is used to transfer binary files. A byte-by-byte copy is made
of the source file. Graphical images, video and executable files are all binary files. If they are
transferred as ASCII, they will be corrupted.

2.6 Session commands
To begin an FTP session, the USER command is sent to the server:

> USER ftpuser
The server responds with:

331 Password required for ftpuser.
The client must respond with the password:

> PASS mypassword
The server responds with:

230 User ftpuser logged in.
The session is now established, and the user can begin issuing various file and directory-related
commands.

To end the session, the client sends:
> QUIT

The server responds with:
221

The session is now closed, and any further attempt to send commands to the server will fail.

2.7 File commands
FTP supports numerous file-related commands.

Files can be deleted (DELE) and renamed (RNFR,RNTO) as well as stored (STOR) and retrieved
(RETR). When a file is stored, it can be written over or appended to (APPE).

See the Sample scenarios examples for more details.

2.8 Directory commands
FTP supports a variety of directory-related commands.

Directories can be created (MKD), removed (RMD), or changed into (CWD, CDUP).

Two types of directory listings can be made with FTP.

The LIST method obtains a list of files (and possibly directories). If a directory is specified, the
server returns a list of files in the directory, together with system specific information about the
files. The file information sent will vary depending on the server system. The data type should be set
to ASCII for this file name list. If no directory is specified, details of the current working directory
listing are sent.

The NAME LIST (NLST) method is similar to LIST, but only file names are returned. No other
information about the files is sent. Again, the data type should be set to ASCII.

3 edtFTPnet API
This section will provide an overview of the major features of the library directly related to FTP,
which are encapsulated in the edtFTPnet API. Developers are referred to edtFTPnet's API
documentation for a detailed API description. The demo directory in the distribution contains a
simple example of how the API can be used. Also, the test subdirectory has tests which contain
useful sample code.

The edtFTPnet API is a relatively thin veneer over the FTP protocol described earlier.

Almost all methods can throw an SystemException or an FTPException. The FTPException
provides the ReplyCode property for obtaining the reply code.

3.1 Constructors
FTPClient is the main interface to the edtFTPnet library, and in many cases, it is the only class
which the developer needs to use.

All constructors other than the default constructor are now obsoleted. The RemoteHost property
must then be set to the name of the remote host, and optionally the ControlPort property set – if
it is not, it will default to the standard port 21. Then the Connect() method must be called to
connect to the server.

3.2 Login
The Login() method permits logging in to a remote FTP account, supplying a user name and
password. The User() and Password() methods perform the equivalent operations, and are
supplied separately in the event that a server might be configured to require no password.

The Quit() method quits the current FTP session.

3.3 Directory navigation and control
A number of methods are provided for remote directory navigation. Locally, the current directory of
the calling application is used, and no methods are provided for local directory navigation.

The ChDir() method changes the current remote directory to the one specified, while Pwd() returns
the current directory.

The MkDir() method creates a new directory, while the RmDir() method deletes a directory
(which for most FTP servers must be empty).

Directories (and files) can be renamed using the Rename() method.

3.4 Files and file transfers
The edtFTPnet supports a varied API for file operations.

Files can be deleted with Delete(), and renamed via Rename().

If supported by the FTP server, the Size() command can be used to determine the size (in bytes)
of a remote file. Similarly, the ModTime() can determine the modification time of a remote file, if
supported. The returned DateTime is in GMT.

The various Put() and Get() methods are supplied to put files onto the remote server, and to
retrieve them.

In their simplest form, the local and remote file names are supplied as parameters, and the file
contents transferred. If putting, files are placed in the remote current directory. If getting, files are
fetched from the remote current directory.

The transfer mode is important – both ASCII and binary modes are supported as discussed in the
FTP protocol section. Binary mode is simply a byte by byte exact copy of the file to be transferred.
Typically, this would be used for binary files such as images, executables and documents in binary
form (e.g. Microsoft Word or Adobe Acrobat files).

ASCII mode attempts to translate end of line characters in text files, which vary between operating
systems. For example, Windows uses a CRLF to indicate the end of a line, while Unix uses just LF.
Consequently, ASCII transfers can result in the local and remote files being different sizes. Also,
transferring a binary file in ASCII mode will corrupt the file (by inserting spurious CRs, for
example).

The transfer modes are encapsulated in the FTPTransferType enumeration, which has ASCII and
BINARY values.

The initial transfer type is always ASCII, and the current transfer type can be get and set using the
TransferType property.

Other Get() and Put() methods are also supplied. One form permits Streams to be supplied in
lieu of a local file name.

Byte arrays can be supplied as destinations (for Get()s) and sources (for Put()s) – convenient if
you don't wish to write a file out to disk.

All Put() commands also offer a variation that can direct that the contents being transferred are to
be appended to any existing remote file. Normally, remote files are overwritten. Not all FTP servers
support or permit append operations – they may need to be configured for this option. Obviously,
there are potential security risks associated with appending, as a rogue client could continually do so
until disk space on the server was exhausted.

All transfer commands can be canceled during their operation by the CancelTransfer() method.
Transfer events are discussed later in this document.

3.5 Directory listings
Obtaining remote directory listings is an important part of the API.

The Dir() method is used to retrieve simple listings as an array of strings. If no directory name is
supplied, the current directory is listed. A directory name (that is visible from the remote current
directory) can also be supplied.

If the 'full' parameter is used and set to true, a detailed listing is returned. Each string contains a
variety of server-dependent details about the file or directory.

The DirDetails() method works in the same way as when a full listing is requested via Dir(),
but attempts to interpret the detailed listing and construct an FTPFile object for each remote file or
directory. The FTPFile object indicates the file name, size, whether or not it is a directory and
other useful attributes.

Some FTP servers permit file masks to be used in Dir(), however many do not. It is best not to
assume this is possible. Similarly, some FTP servers do not even permit a directory to be supplied,
but simply list the current directory.

3.6 Miscellaneous commands
There are a number of useful additional commands that fall into no particular category.

The System() command returns a string representing the remote operating system. This is server
dependent.

The Help() command returns the remote server's help text for the supplied command.

The current version of the library can be obtained via the Version property, which returns an array
of three integers, representing {major,middle,minor} version numbers. For example, version 1.1.0
of the library would return {1,1,0}. The BuildTimestamp property gets the timestamp of the
library's build, in dd-MMM-yyyy HH:mm:ss z format.

3.7 Message Logging
Sometimes it is useful to obtain a log of the FTP commands and replies that are sent back and forth.
These are available via the logging API, but occasionally it is useful to get a separate record of
messages that is not mixed in with the logging (which can be extensive depending on what level is
set).

Two events, CommandSent and ReplyReceived, are provide in FTPClient. These are .NET
events, and can be subscribed to using standard event handling. They are described below:

Event Description Event Argument
CommandSent Notifies subscribers of the command

just sent to the FTP server
FTPMessageEventArgs

ReplyReceived Notifies subscribers of the reply just
received from the FTP server

FTPMessageEventArgs

3.8 Transfer Events
A number of events are provided in FTPClient so that users can be notified of data transfers.
These are .NET events and can be subscribed to using standard event handling. They are listed
below:

Event Description Event Argument
TransferStarted Notifies subscribers that a data transfer

has started
TransferEventArgs

TransferComplete Notifies subscribers that a data transfer
has started

TransferEventArgs

BytesTransferred Notifies subscribers that a certain
number of bytes has been transferred in
the current transfer. The
TransferNotifyInterval property
controls how frequently this event is
raised – the lower the
TransferNotifyInterval, the more
frequently the event is raised.

BytesTransferredEve
ntArgs

3.9 Firewalls
Often, a firewall and/or proxy separates FTP clients from FTP servers. Sometimes, it is necessary to
perform some configuration (perhaps even in the firewall) so that the server can be reached.

SOCKS proxy servers are supported in edtFTPnet/Pro, not in edtFTPnet.

However there is a standard protocol for using a firewall/proxy server to connect to a remote host.
When constructing an instance of FTPClient, instead of supplying the remote hostname, the name of
the firewall is supplied instead. Instead of supplying the remote user as the user, a string is supplied
in the form of remoteuser@remotehost.com. The remote password is supplied as normal.

So instead of supplying ftp.remotehost.com to the FTPClient constructor (amongst other
parameters), firewallhostname is supplied. Similarly, instead of supplying (remoteuser,
remotepassword) to the Login() method, (remoteuser@remotehost.com, remotepassword) is
supplied. Many firewalls support this syntax. Firewalls we have confirmed support this syntax at the
time of writing include Check Point Firewall-1 and WinProxy.

4 Logging API

4.1 Overview
edtFTPnet has a powerful logging API modelled on the popular log4net library – in fact full
integration with log4net is planned.

The .NET namespace is EnterpriseDT.Util.Debug,and the key class is the Logger class. See
the API documentation for the full API.

The logging API allows developers to embed log statements in their code that can disabled or
enabled at runtime, and can be directed to standard output, or to file or both. Stack traces from
caught exceptions are an optional parameter to logging calls. Judicious use of logging in
applications can be a powerful aid to debugging, as well as a useful tool for diagnosing production
problems. Also, all log statements are prefixed with a timestamp accurate to milliseconds, and can
thus be extremely valuable in performance tuning.

4.2 Logging Levels
A number of logging levels are supported - FATAL,ERROR,WARN,INFO,DEBUG (as well as
ALL and OFF, which are not really levels as such). Logging statements are made at a certain level,
such as INFO, and the level for the library as a whole is set. DEBUG is considered to be the highest
level of logging (as it generally produces the most output). A message is logged if its level is less
than or equal to the overall logging level. For example, if a logging call is made at the DEBUG level
and the overall level is set to INFO, it would not appear in the logs. If a logging call is made at
WARN, and the overall level is set to INFO, it would appear in the logs.

Logging levels are encapsulated in the Level class. For example, the WARN level is represented by
Level.WARN.

By default, all logging output is directed to the standard output stream (if it is equal to or less than
the level set for the library). Appenders are supported, whereby output can be directed elsewhere.
Currently, FileAppenders are the only implemented Appenders, which permit logging output to be
directed to named files.

4.3 Configuration
By default, the log level is switched to OFF, so that no logging will appear.

The log level can be changed in two ways. Firstly, it can be changed explicitly by using the
CurrentLevel property of the Logger class. For example,

Logger.CurrentLevel = Level.DEBUG;

will set the global logging level to DEBUG.

A application setting, edtftp.log.level, can also be used to set the logging level from the
configuration file (in the appSettings section). For example, the following configuration could be
used to set the global logging level to INFO:

<configuration>
 <appSettings>
 <add key="edtftp.log.level" value="INFO"/>
 </appSettings>
 </configuration>
.

Full integration with log4net will be possible in future releases.

4.4 Examples
To add logging to a particular class, a Logger object is required. Typically, an instance of a Logger
is created for every class that logs – a static class member, as below:

 private static Logger log = Logger.GetLogger(typeof(MyClass));
Logging can then be performed by calling the logging methods on the log object, e.g.

log.Info("Connecting to server " + host);

log.Debug("User name: " + user);

Note that exceptions can be passed to the logging methods as a second parameter, and the stack
trace is written to the log stream, e.g.

try {
 ... do something ...
}
catch (Exception ex) {
 log.Error("Failed to do something", ex);
}

Although the overall logging level can be set to, say INFO, so that log.Debug() calls are not sent to
the log stream, sometimes constructing calls can be expensive if they involve a number of string
concatenations. In these cases, it is best to test the logging level before making the call, so that the
expensive construction is never performed, e.g.

if (log.IsDebugEnabled())
log.Debug(“Transferred “ + n + “ bytes for file “ + filename);

As noted, all logging by default goes to standard output. A FileAppender must be added if logging
is to go to a file (and this will disable logging to standard out). An example is shown below:

Logger.AddAppender(new FileAppender(myLogFileName));

Now all logging output will go to the FileAppender's file, and no logging will go to standard output.
Multiple FileAppenders can be added. If the StandardOutputAppender is added to the Logger as
well, logging will be directed to the file and to standard output.

5 Glossary
API – Application Programmer's Interface

Base-64 Encoding – An encoding use for transmitting binary data through a text only
communication channel – only readable characters are used.

Control Channel – TCP connection used by an FTP session to transmit commands and the
responses to those commands. There is only one of these per session.

CRLF – Carriage return/Line Feed.

Data Channel – TCP connection used by an FTP session to transmit data such as a directory listing
or a file. There are multiple data channels per session; one for each data transfer.

EDT – Enterprise Distributed Technologies

IETF – Internet Engineering Task Force.

FTP – File Transfer Protocol

FTPS – FTP over SSL/TLS. It comes in 2 variants: explicit FTPS and implicit FTPS (see the
definitions for those terms in this glossary).

Internet Draft – Working document of the IETF. An Internet Draft may eventually be approved as
an RFC. Internet Drafts often become defacto standards before they are approved as RFCs
due to the length of the process of RFC approval.

RFC – Request For Comment. A formal Internet specification approved by the IETF.

RFC959 – The specification for FTP.

SSL – Secure Sockets Layer.

TLS – Transport Layer Security (effectively the latest version of SSL).

6 References
Document Location

IETF http://www.ietf.org
RFC959 http://www.faqs.org/rfcs/rfc959.html
Log4net documentation http://logging.apache.org/log4net/

